
SCALING CHEF
AUTOMATE
BEYOND 100,000 NODES
Joshua Hudson, Customer Engineer | Thomas Cate, Customer Engineer

Published September, 2018

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 2

Chef Automate is an enterprise platform that allows developers, operations

and security engineers to collaborate effortlessly on delivering application

& infrastructure changes at the speed of business. Chef Automate provides

actionable insights with enterprise scale and performance across multiple data

centers and cloud providers.

Automation is essential at scale, and as the managed environment grows,

visibility across all nodes is critical to maintaining compliance and enabling

fast, problem-free software delivery. Chef software is in production in some

of the world’s largest, most-demanding environments. This paper describes

proven approaches for scaling Chef Automate while detailing the architecture

& hardware planning and performance tuning needed to run the system

smoothly.

ARCHITECTURE COMPONENTS
A good way to think about the Chef Automate server is as a collection of microservice

components underpinned by open source software including Elasticsearch, Systemd, Chef and

the Linux kernel.

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 3

It's important to understand the performance characteristics, monitoring, and troubleshooting

of Linux systems, and of Chef Automate's open source components, including NGINX,

Elasticsearch, and systemd-journald. The proprietary code in Chef Automate consists of

microservices written in Go.

In Chef Automate, data flows from a service called “data collector” in Nginx to Elasticsearch as

shown in the diagram below. These services are the “critical path” for your Chef data and must

be monitored and tuned in order to alleviate data processing bottlenecks.

MONITORING
Collecting excellent metrics are fundamental to making architecture or tuning changes —

those are not only real-time metrics, but historical trends and the ability to correlate various

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 4

metrics. It’s important to remember that the architecture and sizing recommendations below

are a starting point, however real-life results will vary based on a myriad of factors. Data-driven

decision making based on reliable metrics and trends will enable you to increase performance

while decreasing costs.

At Chef, we’re big fans of Open Source monitoring solutions such as Sensu, Graphite, the Elastic

stack and the Influx Data Platform; these are the tools we use to monitor our own software

when we run it in production.

We encourage you to make your own metrics collection decisions, but these are the most

important metrics we’ve found to measure when evaluating the effectiveness of your Chef

Automate system:

• API Request and Error rates - - Automate uses Nginx as a load balancer. All user

interactions and data ingest comes in through here. As load begins to climb, it is most

important to measure and graph the response times (in milliseconds) and error rates (non

200 messages) over time. You can find these messages with something like (journalctl -u

chef-automate | grep automate-load-balancer). In this message we can see that we got

a success (200) and the whole response including nginx took 0.021 seconds. The second

200 and time are what nginx saw from the Go upstream services.

 Aug 15 15:44:38 ip-172-31-11-27.us-west-2.compute.internal hab[23405]: automate-

load-balancer.default(O): - [15/Aug/2018:15:44:38 +0000] "POST /data-collector/

v0 HTTP/1.1" 200 "0.021" 0 "-" "Go-http-client/1.1" "172.31.11.27:2000" "200"

"0.020" 622

 • Elasticsearch Post time - The amount of time it takes for Elasticsearch to ingest the data

is measured by the POST time to the _bulk API endpoint - as shown in this ingest-service

log (journalctl -u chef-automate | grep ingest-service). POST times above a few seconds

may indicate that Elasticsearch is suffering from insufficient disk speed, Java tunings, or

CPU/memory constraints. In this example the POST time is 12 milliseconds. Looking at

these messages isolates what you’re looking at to only Go=>Elasticsearch, simplifying your

troubleshooting.

Aug 15 13:54:37 ip-172-31-11-27.us-west-2.compute.internal hab[23405]:

ingest-service.default(O): time="2018-08-15T13:54:37Z" level=info msg=metric

index=converge-history-2018.08.15 metric=elasticsearch ms=12 type=doc_insert

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 5

 • Java VM (JVM) Metrics - The data storage and search engine is Java based and tuned by

default for smaller systems. The most important metric to watch is the amount of time the

JVM spends paused due to “stop the world” garbage collection (GC) events. If this value

becomes a significant amount of time (1% or higher) it indicates that the JVM Heap size is

too small (frequent GC events) or too large (infrequent but very slow GC events).

 • System disk latency - The creators of Elasticsearch recommend using Flash or Flash-

accelerated local disk storage for optimum performance. The use of magnetic and

network based storage incur additional latency as measurable by disk latency (average

time it takes to service a request) and disk queue length (the number of IOs waiting to

be serviced). Significant spikes in latency or disk queue length can impact many of the

above metrics.

 • System disk utilization - A full disk can cause significant problems for data storage

systems used by Chef Automate: Elasticsearch, and PostgreSQL. If disks are not

monitored, situations can arise including significant downtime, data corruption and data

loss.

 • System CPU utilization - Number of cores, processor “steal time” indicating contention on

VM systems.

ARCHITECTURE/COST CONSIDERATIONS
Chef’s recommended architectures below are based on a number of observations we’ve

seen during customer deployments and internal testing. You may opt to decrease your

hardware requirements by adjusting some of these site-wide parameters, or increase your data

granularity which will increase the hardware requirements.

CHEF CONVERGE INTERVAL & OVERALL CHEF CLIENT RUNS PER
MINUTE

Although the total number of nodes is an important measure, the data processing speeds

of Chef Automate will be primarily determined by the rate of Chef Client Runs per Minute

(CCR/m). This also includes InSpec if configured to do so (see section on Compliance data

below). The CCR/m rate can be greatly impacted by adjusting the Chef client’s converge

interval (how frequently does Chef run) and the Splay (level of randomization so that all chef

clients don’t run at the exact same second).

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 6

Our calculations below are based on the default Chef Client settings, which are a 30 minute

converge interval and a 5 minute splay - in order to maximally smooth the server load. Cutting

either your converge interval or splay in half will double the server load and processing

requirements. From a calculation standpoint, it is simplest to say that 5,000 nodes at a 30

minute converge interval are equivalent to 10,000 nodes at a 60 minute interval.

DATA RETENTION PERIOD

Chef Automate allows users to control the retention period of its data. Our calculations are

based on a 90-day retention period for both Chef run and Compliance data, as this is a common

value in regulatory documents. Customers may choose to increase the retention period (thus

increasing storage requirements) or decrease it. A simple calculation is that a doubling of the

data retention period will double the amount of data stored.

For more information on controlling Chef Automate’s data retention, see:

https://automate.chef.io/docs/configuration/#data-retention

COMPLIANCE DATA

The audit cookbook is used to collect Compliance (InSpec) data during the Chef client

run. When the audit cookbook is used, significantly more data is sent to Chef Automate’s

data-collector service. Since typically this data is not as urgent, we tested with the audit

cookbook configured to run daily. Configuring this to run more often will put more load on the

compliance-service and automate-elasticsearch service.

SIZE OF NODE OHAI DATA

Every chef client runs Ohai, a tool for collecting system data. In Enterprise environments the

Ohai data can become quite large. Two common causes are the ohai and sessions plugins,

which are enabled by default in pre-14 versions of chef-client. These plugins can gather excess

system information about non-local users (passwd) and system sessions on linux machines that

bloat node objects with non-valuable data. If you are using a chef-client version earlier than

Chef 14, we recommend disabling these ohai plugins in your client settings.

For more information on disabling ohai plugins or restricting their data from being sent to Chef

Automate, see: https://docs.chef.io/ohai.html#ohai-settings-in-client-rb

https://automate.chef.io/docs/configuration/#data-retention
https://docs.chef.io/ohai.html#ohai-settings-in-client-rb

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 7

SYSTEM ARCHITECTURE RECOMMENDATIONS

ASSUMPTIONS

 • 30 minute Chef Client converge interval with a 5 minute splay:

 ₀ It’s important to note that if you choose to do a more frequent converge interval (say

15 minutes instead of 30) then you must double the node count in the calculation.

 • 90-day data retention period:

 ₀ The data storage requirement scales up and down proportionately if you wish to

increase or decrease the retention period.

 • Daily compliance scans:

 ₀ We assume all nodes are running compliance scans with the audit cookbook. If you

enable ['audit']['interval']['enabled'] = true it will run daily.

HARDWARE PLANNING

Elasticsearch is a big data platform that automatically distributes the data storage and

processing workload across all cluster members using sharding. It also automatically provides

redundancy for all data stored (with replica shards), allowing customers to optimize their

storage solutions for speed rather than redundancy. When using a multi-node Elasticsearch

cluster, you can lose any single member without losing any data.

Storage

Elastic strongly recommends the use of Flash or SSD storage that is local to the machine

running it (not NAS or SAN). In cloud environments, we’ve found the best performance from

machine types with local SSD storage (AWS I3 or D2, Azure Ls series) , however, the SSD-

based network storage options (AWS provisioned-IOPS EBS and Azure Premium Storage)

provided acceptable latency in our tests but allowed much larger volume sizes.

In on-prem VM environments we recommend using direct-attached SSD arrays or SAN systems

that can provide guaranteed bandwidth reserved for Elasticsearch. For larger datasets,

physical machines optimized for big data workloads may be more economical. The storage

must be able to handle at least 1000 sustained IOPs per Elasticsearch node with an average

latency of 2ms or less.

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 8

For storage space, the largest amount of data we observed stored was 12 MB per client

node per day (split among the Elasticsearch servers). This grows linearly, to illustrate with an

example:

 • To retain 90 days of data for one node, you need 1.08 GB of storage space.

 • If you store this on a multi node cluster it will require 2.16 GB, since two copies of each

document will be stored in the cluster.

CPU

On the Chef Automate server, the primary consumers of CPU resources are the ingest and

compliance services. These services are much more efficient than the previous Logstash

implementation Automate 1 uses. However, if you have a very large estate of nodes sending

data to Automate, these processes will require the most CPU usage.

Memory

The largest consumer of memory on all of your servers will be Elasticsearch. Giving more

memory to Elasticsearch will generally increase UI performance, as Elasticsearch will be

serving data from memory instead of disk. Postgres is installed on the Automate box, but it is

only used for smaller amounts of data related to compliance profiles and authentication.

Network

Elasticsearch documentation states: Avoid clusters that span multiple data centers, even if the

data centers are collocated in close proximity. Always avoid clusters that span large geographic

distances.

Gigabit Ethernet is okay for most installations, until the data ingest rate begins to reach 400

Mbps (50 MB/s). At that point all systems including the Automate server should be upgraded

to 10GbE NICs

.

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 9

SERVER SIZING:

This is the upper limit in number of nodes these instances can support based on a 30-minute

converge interval, 24 hour compliance interval and 90 day data retention period.

Note 1: External Elasticsearch doubles storage requirements, since the cluster keeps 2 copies of

each document.

Note 2: Recommended specs also vary slightly from tested specs, for example, the m4.10xlarge

has a lot more than 64GB of RAM, but wasn’t using most of it.

PERFORMANCE TUNING
The following performance tuning settings are required in order to achieve the desired

throughput rates on the recommended hardware.

ELASTICSEARCH

In Chef Automate the biggest impact in user perception of performance is how responsive

Elasticsearch is. All of your historical node and compliance data is stored here, and UI is built on

top of queries to this data store.

NODES CCR/

MIN

Frontend

Server Specs

(Tested ec2

instance)

Frontend

Storage

(TB of SSD)

Elasticsearch

Server Count

Elasticsearch

Server Specs

(Test ec2

instance)

Elasticsearch

Per Node

Storage (TB of

SSD each)

Elasticsearch

Total Storage

(Total TB)

5,000 8.3

4 CPU

16 GB

(m4.xlarge)

6 0 N/A N/A N/A

20,000 322

16 CPU

64 GB

(m4.4xlarge)

22 0 N/A N/A N/A

60,000 996

16 CPU

64 GB

(m4.4xlarge)

0.5 3

8 CPU

64 GB

(r4.2xlarge)

44 132

100,000 1610

32 CPU

64 GB

(m4.10xlarge)

0.5 5

8 CPU

64 GB

(r4.2xlarge)

44 220

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 10

Multiple Elasticsearch Nodes

The chart above gave some examples of where it might make sense to scale Elasticsearch

horizontally. Another concern this covers is data resiliency. In a multi-node Elasticsearch

deployment you have 2 copies of all data in the cluster, meaning a single Elasticsearch node

going down does not take down Chef Automate. Keep in mind though that a cluster is not a

replacement for maintaining backups.

JVM settings

Elastic has very good documentation for recommended heap settings:

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/heap-size.html

Applying these settings to Chef Automate is fairly easy. Generally we recommend that you set

Elasticsearch heap size to 50% of the total system RAM, with a maximum of 28GB. This is why

the largest dedicated Elasticsearch servers we test with have 64GB of RAM. That gives the OS

plenty for disk caches and let’s us set the maximum heap Elastic recommends.

Unlike previous versions, when you connect Chef Automate 2 to an external Elasticsearch

cluster it will spin up its own copy of Elasticsearch to route queries and communicate with

the cluster. We do recommend increasing the heap size of this Chef Automate managed

Elasticsearch instance as well, even if you’re using an external cluster.

For example, in the 60,000 node example above you would configure the Chef Automate

frontend server like so.

[elasticsearch.v1.sys.runtime]

 heapsize = "16g"

Then, on the external Elasticsearch servers, update the /etc/elasticsearch/jvm.options file to

set these two options

-Xms28g

-Xmx28g

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/heap-size.html

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 11

Minimum Master Nodes

When running an external Elasticsearch cluster we recommend that you set minimum_master_

nodes to (ClusterSize/2)+1 to ensure that you never end up with a split brain scenario where

different nodes end up with a different view of the world. For our recommended cluster sizes

this is 2 for 3 node clusters and 4 for 6 node clusters.

Configure minimum_master_nodes in your /etc/elasticsearch/elasticsearch.yml before starting

your cluster.

discovery.zen.minimum_master_nodes: 2

If you need to change this on a live cluster, for example if you expand from 3 to 6 elasticsearch

cluster nodes. You can set it with curl on any node in your cluster. Once set on a single node the

setting will apply to all.

cat > /tmp/elastic-settings.json

{

 "persistent" : {

 "discovery.zen.minimum_master_nodes" : 4

 }

}

curl -XPUT http://`hostname`:9200/_cluster/settings -d @/tmp/elastic-settings.

json

File Handles

Elasticsearch’s performance may be limited by the maximum number of file descriptors it can

open. Chef Automate will configure this for its built in Elasticsearch. However, for any external

Elasticsearch servers you set up, this is typically set by the limits.conf configuration file in Linux

and tested using the `ulimit -n` command. To adjust this setting, see the documentation for

your operating system.

For more information, see:

https://www.elastic.co/guide/en/elasticsearch/guide/current/_file_descriptors_and_mmap.

html

https://www.elastic.co/guide/en/elasticsearch/guide/current/_file_descriptors_and_mmap.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/_file_descriptors_and_mmap.html

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 12

Indexing Throttle

Elasticsearch will throttle indexing while segments are merging. By default, this is set very

conservatively. We set this to 100MB which is Elastic’s recommend value for SSD storage:

cat > /tmp/elastic-settings.json

{

 "persistent" : {

 "indices.store.throttle.max_bytes_per_sec" : "100mb"

 }

}

curl -XPUT http://`hostname`:9200/_cluster/settings -d @/tmp/elastic-settings.

json

For more information see:

https://www.elastic.co/guide/en/elasticsearch/guide/current/indexing-performance.

html#segments-and-merging

LINUX SERVERS

Modern Linux/kernel

The Chef Automate server itself will require systemd, which generally means at least rhel/

cent/oel 7.x or Ubuntu 16.04 or greater. We recommend using the same operating system for

your external Elasticsearch machines.

SELinux (RHEL)

On RHEL-based systems we have observed up to a 20% performance penalty in IO and process

intensive services when SELinux is enabled. We recommend disabling it, or else increasing

hardware to compensate.

to immediately disable selinux

setenforce 0

To make the change persist through reboots

sed -i 's/SELINUX=enforcing/SELINUX=permissive/g' /etc/selinux/config

https://www.elastic.co/guide/en/elasticsearch/guide/current/indexing-performance.html#segments-and-merging
https://www.elastic.co/guide/en/elasticsearch/guide/current/indexing-performance.html#segments-and-merging

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 13

RHEL boot-time kernel tuning:

In order to take advantage of modern Flash devices, the following changes must be made on

RHEL-based systems (they are the default on Ubuntu 16.04).

 • Enable Multi-queue I/O scheduling for SCSI

 • Set the “noop” disk I/O scheduler

 • Disable Transparent Huge Pages

Adjust the following line in your GRUB configuration file, /etc/default/grub:

(changes bolded for emphasis)

GRUB_CMDLINE_LINUX="console=ttyS0,115200n8 console=tty0 net.ifnames=0

biosdevname=0 crashkernel=auto scsi_mod.use_blk_mq=Y elevator=noop transparent_

hugepage=never"

Linux kernel VM tuning

The following settings are recommended by the Chef Automate development team to increase

system responsiveness under load (reboot required):

cat > /etc/sysctl.d/chef-highperf.conf <<EOF

vm.swappiness=10

vm.max_map_count=262144

vm.dirty_ratio=20

vm.dirty_background_ratio=30

vm.dirty_expire_centisecs=30000

EOF

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.3_Release_Notes/technology_previews_storage.html
https://access.redhat.com/solutions/5427
https://access.redhat.com/solutions/1320153

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 14

Filesystem

Chef Automate 2 stores all of its data under /hab, for this data store we recommend using

the the XFS filesystem combined with the LVM (Linux Volume Manager). XFS provides many

performance advantages over the ext4 filesystem. To format a new volume appropriately:

Create LVM LV /dev/chef-vg/chef-lv

pvcreate /dev/xvdb

vgcreate chef-vg /dev/xvdb

lvcreate -n chef-lv -l 80%VG chef-vg

create xfs

mkfs.xfs /dev/chef-vg/chef-lv

mount

mkdir -p /var/opt

mount /dev/chef-vg/chef-lv /var/opt

It is worth noting that AWS EBS volumes are limited to 16TB in size, and other storage solutions

may also present per-volume limits. In those cases we recommend building a RAID-0 stripe set

of multiple volumes before formatting with LVM+XFS, like so:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/raid-config.html

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/raid-config.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/raid-config.html

SCALING CHEF AUTOMATE : BEYOND 100,000 NODES | page 15

WANT TO LEARN MORE?
Chef offered a training course at ChefConf 2018 called “Operating Chef Automate v 2.0”.

You can find this all with other Chef Training offerings at https://training.chef.io.

General Elasticsearch configuration for Automate 2.

https://automate.chef.io/docs/configuration/#general-elasticsearch-configuration

Explanation of how Chef Automate 2’s internal Elasticsearch functions, with external clusters.

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/modules-node.

html#coordinating-node

How to upgrade your Elasticsearch cluster.

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/setup-upgrade.html

Air-gapped install for Automate 2.

https://automate.chef.io/docs/airgapped_installation/

Data-collection for Automate 2.

https://automate.chef.io/docs/data-collection/

https://training.chef.io
https://automate.chef.io/docs/configuration/#general-elasticsearch-configuration
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/modules-node.html#coordinating-node
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/modules-node.html#coordinating-node
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/setup-upgrade.html
https://automate.chef.io/docs/airgapped_installation/
https://automate.chef.io/docs/data-collection/

