
Compliance
at
Velocity

Copyright © 2015 Chef Software, Inc.
http://www.chef.io 10/2015

		 1

Executive Summary
Regulatory compliance is a fact of life for every enterprise. At the same time, com-
petitive pressures are increasing with the advent of game-changing new technolo-
gies and customer expectations for digital services. Is it possible for regulated
industries to deliver new products and services at high velocity while still satisfying
their obligations for regulatory compliance? While it is often thought that compliance
always puts a drag on velocity, in this paper we demonstrate that compliance at
velocity is not only a possibility but a reality.

The solution is to embed regulatory compliance into the software production line
in the same way we embed other qualities, such as frame stiffness in automobiles or
round-trip response time in banking applications. Compliance is no longer a detour.
It’s engineered into every step. Like a production line with robots and state-of-the-art
sensors, compliance at velocity uses extensive automation to increase velocity and
accuracy.

Compliance at velocity is based on the idea of infrastructure as code, which
allows an enterprise to specify its compliance-related requirements in ways that can
be automatically tested. Not only does automation increase velocity, it also makes it
possible to consistently apply regulatory requirements in large-scale environments
that may include many thousands or tens of thousands of servers.

Chef is an example of an automation platform that lets you manage compliance.
The Chef Compliance server lets you write rules that express your requirements, and
then uses those rules to test your infrastructure for noncompliant configurations and
out-of-date software. Once problems are identified, you can use the Chef server to
deploy corrections. For a completely automated workflow, you can use Chef Delivery
to test and propagate your changes.

Implementing an automation cycle using modern development practices sets the
stage for an enterprise to become a coded business, one that is nimble enough
to compete in the age of digital everything. This is a truly surprising result: solving
regulatory problems can also help address some of the most pressing competitive
pressures you face.

Compliance
at Velocity

2	 COMPLIANCE AT VELOCITY

The Conflict between Compliance
and Velocity
In every large company, whether industrial or financial, software is playing an in-
creasingly central role. Software-based services are often now the primary means of
contact between a company and its customers; IT is no longer a back-office support
function. From sophisticated banking services accessed entirely through mobile
phones and browsers to automobiles differentiated in the market by how well they
integrate with the consumer’s technology ecosystem, companies are under pressure
to deliver new digital services at unprecedented velocity. Software is eating the world.
This is the new normal.

“We’re not an airline. We’re a software company with wings.1”
– CIO of a major U.S. air carrier

At the same time, regulators are placing increasing focus on detailed compli-
ance. The sheer number of compliance frameworks is daunting, as is the proliferation
of detailed requirements within each regulatory framework. Enterprises have more
motivation than ever to reconcile the conflict between complying with regulatory
requirements and competing in the fast-moving digital marketplace.

Here are just a few examples of compliance frameworks.

Office of Foreign Assets
Control regulations (OFAC).2
Enforces economic and trade
sanctions.

USA PATRIOT Act.3 Requires
business cooperation in the
U.S. for national security and
anti-terrorism.

Gramm-Leach-Bliley Act.4
Governs information sharing and
safeguarding of customer data
by financial services companies
in the U.S.

Red Flags Rule.5 Requires
identity theft protections for
consumers.

Bank Secrecy Act.6 Requires
U.S. financial institutions to assist
U.S. government agencies to
detect and prevent money
laundering.

Sarbanes-Oxley.7 Financial
reporting standards for all U.S.
public company boards, manage-
ment and accounting firms.

Regulation E.8 Regulations for
electronic funds transfers.

Dodd-Frank.9 A major overhaul
of the U.S. financial regulatory
framework.

False Claims Act (FCA).10

Requires accuracy when
reporting information to the
U.S. government.

Health Insurance Portability
and Accountability Act of 1996
(HIPAA).11 Comprehensive rules
for health care providers in the
area of patient privacy.

European Central Bank12

regulations. The ECB took over
supervisory responsibility for
banks in the euro area in Novem-
ber 2014.

Prudential Regulation
Authority.13 Standards and
regulations for banking and
financial services, credit unions,
insurers and investment firms
in the United Kingdom.

Financial Conduct Authority14
regulations. Standards and
regulations for firms providing
financial services to consumers
in the United Kingdom.

Health Information Technology
for Economic and Clinical
Health (HITECH).15 Requirements
for information systems that
contain medical records.

PCI Data Security Standards.16
Standards for payment card data
security.

http://www.treasury.gov/about/organizational-structure/offices/Pages/Office-of-Foreign-Assets-Control.aspx
http://www.treasury.gov/about/organizational-structure/offices/Pages/Office-of-Foreign-Assets-Control.aspx
http://www.fincen.gov/statutes_regs/patriot/
http://www.business.ftc.gov/privacy-and-security/gramm-leach-bliley-act
http://www.business.ftc.gov/privacy-and-security/red-flags-rule
http://www.fincen.gov/statutes_regs/bsa/
http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act
http://www.federalreserve.gov/bankinforeg/regecg.htm
http://www.sec.gov/spotlight/dodd-frank.shtml
http://www.justice.gov/sites/default/files/civil/legacy/2011/04/22/C-FRAUDS_FCA_Primer.pdf
http://www.hhs.gov/ocr/privacy/
http://www.hhs.gov/ocr/privacy/
https://www.ecb.europa.eu/ecb/legal/ssm/framework/html/index.en.html
http://www.bankofengland.co.uk/pra/Pages/default.aspx
http://www.bankofengland.co.uk/pra/Pages/default.aspx
http://www.fca.org.uk/firms/being-regulated/meeting-your-obligations
http://www.hhs.gov/ocr/privacy/hipaa/administrative/enforcementrule/hitechenforcementifr.html
http://www.hhs.gov/ocr/privacy/hipaa/administrative/enforcementrule/hitechenforcementifr.html
http://www.hhs.gov/ocr/privacy/hipaa/administrative/enforcementrule/hitechenforcementifr.html
https://www.pcisecuritystandards.org/security_standards/index.php

	 COMPLIANCE AT VELOCITY	 3

Of course, any snapshot of the current compliance landscape won’t match next
year’s, or even next month’s. Regulations evolve. For example, the Dodd-Frank Act
includes provisions that are still in the process of being defined. Any approach to
compliance must be agile enough to accommodate new and changing requirements.

The conflict between compli-
ance and velocity reduces to two
questions. In essence, the ques-
tion of compliance is “Can you
prove it?” and for velocity it’s “Can
you reduce drag?” Reducing drag
increases velocity and translates
into practical advantages, such as
reducing time to market or increas-
ing the number of services deliv-
ered within a certain time frame.

The Challenge of
Compliance
Regulatory compliance is a large subject.
In overview, we can say that it includes
providing access, ensuring the appropri-
ateness of processes and workflow,
managing technical debt and ensuring
auditability.

Providing access
Access means letting people use information or systems for which they are autho-
rized and protecting information from unauthorized use. It includes establishing user
identity through credentials. It includes access control at both the personal and sys-
tem levels. Additionally, it includes requirements for making those systems available
to users when needed. The key issue is, “In order to do task x, can I access the
systems when I need to?”

Providing access is not a simple requirement to meet. It can involve significant
effort and complexity. For example, recent regulations require named control over
third-party access to enterprise systems. In other words, when a company outsourc-
es IT functions, it is no longer allowed for the outsourcing vendor to have access
credentials that are shared by its employees collectively. Instead, each employee of
the vendor company must have individual access credentials, which must be created
and maintained.

This requirement can make it a challenge for an enterprise with any level of
outsourcing to be able to manage the network perimeter at the required level of de-
tail. Typical solutions include identity proxy servers at the edges of their networks,
and these require new processes and information flows.

Creating appropriate processes and workflows
Providing access is just the start. Processes and workflows must also ensure that
information and systems are used in acceptable and appropriate ways. The key ques-
tion is “Are tasks done in the correct sequence?”

For example, banks are required to prove four-eyes accountability (the require-
ment that two individuals approve an action before it can be taken) in their process-
es. Their processes and workflows must ensure that individuals cannot misdirect
transactions for personal gain.

Can you
prove it?

The Compliance
Challenge

Access

Processes and
workflow

Technical debt

Auditability

Can you
prove it?

The Compliance
Challenge

The Velocity
Challenge

Can you
reduce
drag?

4	 COMPLIANCE AT VELOCITY

Service management is another example of a workflow with compliance impli-
cations. The traceability of service tickets in some ITIL-based service management
workflows satisfy the regulatory requirement for documenting system changes. Such
systems can be effective but they are often slow moving and poorly adapted to
high-velocity development of large-scale systems.

Managing technical debt
Maintenance and upgrades are additional challenges for compliant systems.

Technical debt, as it applies to IT infrastructure, is the need to maintain systems
and upgrade them over time. Technical debt is deferred maintenance, and it starts
accruing the day a system is launched. It includes both the ongoing costs of main-
taining infrastructure by purchasing licenses and using suitable versions of software.
For example, even though there may not be a licensing issue associated with using
an outdated version of Apache Web Server, there can be security concerns that can
only be addressed through an upgrade.

Technical debt is often a problem for established information systems that are no
longer undergoing significant maintenance and upgrades. Such systems often use
older or sometimes obsolete versions of operating systems and other software. Be-
cause they are less frequently maintained, these older systems tend to accrue sig-
nificant technical debt. They are often inadequately documented and difficult to
maintain and change. They will eventually be replaced, but until that time, there must
be a strategy in place for keeping them in compliance.

One of the problems of technical debt is that it is magnified by scale. When an
enterprise has a large number of servers to maintain, using service management
tickets to keep them up to date is no longer feasible. When there are a large number
of systems to maintain, manual update processes always allow technical debt to
accrue. In addition, extended support contracts are often expensive and may require
specialized internal or external resources.

Ensuring auditability
It is not enough to meet regulatory requirements; you must be able to prove that they
are being met. You must ensure auditability.

For access, you must be able to prove that access is controlled and that X peo-
ple accessed Y systems at some time for a particular, appropriate reason that had
certain expected consequences.

For processes and workflows, you must be able to show that acceptable tasks
occurred in the right order.

For systems and infrastructure, you must be able to show that updates and se-
curity patches were consistently and fully applied to address known vulnerabilities
and to adhere to policy.

It is very common that infrastructure changes are not fully documented. Undoc-
umented changes can occur when informal change requests are manually imple-

mented. This causes a phenomenon
called “configuration drift,” where the
state of production systems becomes
unknown or inconsistent with policy.
Configuration drift occurs even when
regulatory frameworks require all
access and changes to production
systems to be logged and auditable—
who made the change, when the
change was made and what change
occurred.

Confidence
A more difficult question than “Can you prove it?” is

“How do you know that you know?” This second question
is a measure of your confidence in the processes and
procedures that produce the proof. For instance, you

may be able to prove the effectiveness of a number
of methods for preventing data leaks, but your

confidence that you are actually covering all or most
of the possible cases is likely significantly lower.

	 COMPLIANCE AT VELOCITY	 5

The Challenges of Velocity
The challenges of velocity are coping with large numbers of detailed regulatory
requirements (the “granularity” problem), being empowered to interpret abstract
requirements into specific policies and adapting to changing requirements.

What is Velocity?
Speed is a scalar. That means that the distance you cover
in any direction is an adequate measure of progress. An
example in large enterprises is the fairly common lament
that, “The team made great progress until the securocrats
got involved and decided to add requirements, so we
were two months late to market.” Great speed initially
but sadly in the wrong direction. Velocity is a vector—
in other words, speed in a specified direction. When
traveling the great coast road outside Melbourne,
Australia you may keep your speed constant, but your
velocity changes every 10 meters! For the enterprise,
the goal is rapid, forward velocity.

Managing detailed requirements
Regulatory bodies are demanding compliance
that has ever finer-grained requirements. This is
a problem of increasing granularity. There was a time when banks only had to worry
about employees leaving customer printouts on the train. Now, any data that is trace-
able to a customer must be inaccessible without the customer’s approval. Some
banks even require finger-vein or card-based authorization from the customer before
allowing a cashier to access the records.

Over the last ten years the regulations controlling the use of personal customer
information have matured and become much more detailed. Depending on the geo-
graphical region, there may be restrictions about which elements of personal cus-
tomer data may be shared. These restrictions can limit how data can be shared with
other systems within the enterprise, can be shared with partners, can be transmitted
outside of the country of origin and can be transmitted in unencrypted form. Data
elements like name, account number and password always have to be encrypted.

The detailed requirements for handling personally identifiable information are
especially challenging in complex systems. For example, a customer record shown
to a bank teller can contain up to 200 types of data in order for the teller to interact
with a customer meaningfully. The data can include information about where the
customer resides, what the customer’s house is like, how many bedrooms it has, and
so on. Businesses have had to start classifying data at field level, with some fields
marked as personal customer information and others not. This kind of detailed data
protection is required by PCI DSS and is relatively recent.

As the number of requirements increases, the process of checking them manu-
ally becomes overwhelming and error prone.

Interpreting abstract requirements
Abstract requirements pose the challenge of interpretation. To put them into effect,
enterprises must translate these requirements into concrete policies. The policies
themselves undergo a process of interpretation when the company’s business units
implement them.

The gap between abstract requirements and what it takes to implement them is
too large for an approach that does not include the intermediate step of interpretation
into policy. Making sure that policies and implementation choices are unambiguous-
ly communicated is also a challenge.

The Velocity
Challenge

Can you
reduce
drag?

Managing detailed
requirements

Interpreting abstract
requirements

Adapting to changing
requirements

6	 COMPLIANCE AT VELOCITY

For example, a requirement might state that “only users and automated process-
es that need access to a server should be allowed that access.” This requirement
sounds concrete, but in a large system there are many resources to access and
many applications that need access. It’s actually an abstract requirement. There are
a number of ways a company might develop policies and implementations that meet
the top-level requirement.

Enterprises must recognize when they are facing abstract requirements and take
control of the situation. Trade-offs must sometimes be made; you cannot refer every
question to a regulator. Clarifying the ownership of these decisions is critical in order
to enable the enterprise to take action when abstract requirements are encountered.
Further, organizations need a framework for prioritizing and planning the trade-offs
they will make. Economic methods, such as Cost of Delay, need to underpin the
decision-making process.

The requirements of regulatory authorities and the policies created by executives
are not one-way communications. Feedback occurs at each level. Enterprises lobby
for pragmatism both before and after regulations are known, and regulations evolve

as regulators learn from experience in the
wild. Policies may change as executives get
feedback from regulators and from the expe-
riences of policy implementers in their organi-
zations.

The requirements of regulatory authori-
ties and the policies created by executives
are not one-way communications. Feedback
occurs at each level. Enterprises lobby for
pragmatism both before and after regulations
are known, and regulations evolve as regula-
tors learn from experience in the wild. Policies
may change as executives get feedback from
regulators and from the experiences of policy
implementers in their organizations.

The regulatory conversation
The US FFIEC position paper on banking in the

cloud (Outsourced Cloud Computing Statement)
is a good example of the conversation that occurs
when enterprises lobby for pragmatism. Although

there have been many subsequent statements
on cyber-security, clarity on what cloud-based

banking may mean is still being worked out and
is going to be largely a function of a bank’s

ability to convince regulators of its confidence in
non-colocated infrastructure. This does not mean
that the FFIEC and other regulators are standing
still. Discussions are occurring at every level, but

how lessons at each of these levels will ultimately
cohere into firm regulation is unknown.

REQUIREMENTS POLICIES
IMPLEMENTATIONS

OF POLICIES

POLICY FEEDBACKREQUIREMENT FEEDBACK

Regulatory Authority Executives Business Units

	 COMPLIANCE AT VELOCITY	 7

Adapting to changing requirements
In some cases, such as Dodd-Frank in the United States, regulatory provisions are
still evolving. By some estimates, only 40% of the eventual requirements have been
finalized to date. Any approach to compliance must be able to accommodate new and
changing requirements.

In addition, emerging regulations generally include a time frame. Organizations
must remediate the gaps between the requirements and their current systems within
a fixed time. In some cases, a credible plan to remediate over a longer term is ac-
ceptable. Even when there may be some flexibility in the schedule for remediation,
compliance is eventually required.

Reconciling Compliance and Velocity
Compliance and velocity can be reconciled by embedding compliance into the soft-
ware production line in the same way we embed other qualities, such as frame
stiffness in cars or round-trip response time in banking applications. Compliance
should not be a detour.

For example, it is helpful to think of compliance as a framework that allows us to
refine requirements over time, as we better understand the demands placed on the
enterprise. This allows us to put measures in place that evolve as the intentions of
the regulators become clearer or change. It also allows an enterprise to perform
compliance at velocity.

The Compliance
Challenge The Solution

The Velocity
Challenge

Can you
prove it?

Can you
reduce
drag?

COMPLIANCE
AT VELOCITY

Access

Processes and
workflow

Technical debt

Auditability

Managing detailed
requirements

Interpreting abstract
requirements

Adapting to changing
requirements

ANALYZE

SPECIFY

TEST

CERTIFY

Determine the
desired state

Describe it in a
formal language

Untested compliance
is an illusion!

Review and
sign o�

8	 COMPLIANCE AT VELOCITY

The solution to the compliance at velocity problem is multifaceted. A fundamen-
tal component is an automation cycle that is part of a deployment pipeline for infra-
structure. The cycle includes four steps. They are analyze, specify, test and certify.

Analyze: Choose your desired state
The first stage of compliance at velocity is being clear
about what the desired state actually is. Desired state
is an implementation choice. Regulatory require-
ments and enterprise polices influence the decisions
of implementers within business units as they design and build systems.

The idea of desired state configuration can be contrasted with what is known as
checked state configuration. Checked state configuration uses some method (man-
ual or automated) to check that what was built is in the expected state. Deviations
from policy can be flagged or reported but not automatically repaired.

With desired state, the actions of the automation framework take the system as
a whole closer to a specified goal. Elements that may have drifted from the desired
state are corrected when the discrepancy is detected. In other words, builds and
status checks are part of the same process, which is what we want for compliance
at velocity.

Choosing the desired state and expressing it at an appropriate level of detail are
more challenging problems than writing the automation code itself.

Specify: State requirements in a
formal language
Closing the gap between specifying and implement-
ing regulations requires an unambiguous expression
of the requirement in human- and machine-readable
form. A formal language can achieve this level of clarity and precision.

ANALYZE

Determine the
desired state

SPECIFY

Describe it in a
formal language

The Solution

COMPLIANCE
AT VELOCITY

ANALYZE

Determine the
desired state

SPECIFY

Describe it in a
formal language

TEST

Untested compliance
is an illusion!

CERTIFY

Review and
sign off

	 COMPLIANCE AT VELOCITY	 9

A concrete example of a formal language is the one used by the Chef Compli-
ance server. The server is a part of the Chef automation platform. It provides a lan-
guage for creating rules that express your requirements. It then uses those rules to
test the nodes in your network for problems.

DESCRIBING PCI DSS REQUIREMENTS
WITH CHEF COMPLIANCE
The Payment Card Industry Data Security Standard (PCI DSS) is an information
security standard for organizations that handle major credit cards. Its goal is to re-
duce credit card fraud by safeguarding cardholder data. The Chef Compliance lan-
guage lets you express PCI DSS requirements as rules.

Here is a Chef Compliance rule that ensures that insecure services and proto-
cols, such as telnet, are not used.

describe package('telnetd') do

 it { should_not be_installed }

end

describe inetd_conf do

 its("telnet") { should eq nil }

end

PCI DSS requires that cardholder data that is sent across open, public networks
be encrypted. Here is a Chef Compliance rule that ensures that the web server is
only listening on well-secured ports.

describe port(80) do

 it { should_not be_listening }

end

describe port(443) do

 it { should be_listening }

 its(‘protocol’) {should eq 'tcp'}

end

Here is a Chef Compliance rule that controls the available users for a server.

describe user('root') do

 it { should exist }

 it { should belong_to_group 'root' }

 its('uid') { should eq 0 }

 its('groups') { should eq ["root"] }

end

describe user('mysql') do

 it { should_not exist }

end

Compliance at velocity requires that members of different teams, such as devel-
opment, operations, compliance and security, all have access to compliance rules.
You can add metadata to those rules to ensure that everyone can understand the

10	 COMPLIANCE AT VELOCITY

requirements. For example, here is a rule (or control) to specify that only SSH version
2 is acceptable.

control "sshd-11" do

 impact 1.0

 title "Server: Set protocol version to SSHv2"

 desc "

 Set the SSH protocol version to 2. Don't use legacy

 insecure SSHv1 connections anymore.

 "

 describe sshd_conf do

 its('Protocol') { should eq('2') }

 end

end

Here is a rule that ensures that only enterprise-compliant ciphers are used for

SSH servers.

describe sshd_config do

 its('Ciphers') { should eq('chacha20-poly1305@openssh.com,aes256-
ctr,aes192-ctr,aes128-ctr') }

end

Test: Untested compliance
is an illusion
Test-driven development (TDD) is a proven approach
to designing software. Formally defined, automated
tests are written first, and the software is developed
until all the tests pass. The advantage of this ap-
proach is that what you are testing for and what suc-
cess looks like are explicitly defined. Feature-level
components of compliance (for example, the ability
for a website to be translated for vision-impaired users in Europe) should be tested
this way. TDD is a great way to be sure that ‘you know that you’ know you are com-
pliant.

Infrastructure that is described as code is also testable by means of an automat-
ed process. Every requirement, especially those related to compliance, can be ex-
pressed as a test. Apart from the usual advantages, the test results act as a record
of your interpretation of a particular requirement. If the only way that a system is
configured is through an automation server, auditors then have a reliable record of
exactly how you are satisfying compliance. This is taking control of the situation.

By defining compliance requirements as testable code, compliance profession-
als, developers and system administrators have a clear set of standards that must be
met for compliant systems.

Certify: Review and sign off
Incorporating the tests for compliance in the production pipeline means that at the

TEST

Untested compliance
is an illusion!

	 COMPLIANCE AT VELOCITY	 11

time of deployment, a separate certification step is
not always required. The automated tests give confi-
dence that the requirements have been met. Howev-
er, in some cases, regulatory requirements or
organizational processes do require a final human
sign off before promotion to production. The timeli-
ness of the sign-off indicates how well the compliance officers have
specified the desired state. The clearer the specification, the faster the software is
released to production. The automation cycle changes the role of compliance officers
from being interested observers of the development process to being invested
contributors to the velocity of deployment.

CERTIFY

Review and
sign off

Separate certification from testing

One surefire way of slowing down production velocity is to confuse
the process of certification, required in some industries, with the
process of automated testing of applications and infrastructure.
Such testing is based on the system’s desired state expressed in a
human- and machine-understandable form.

Those usually responsible for certification, which might include groups
such as Security, Internal Audit, and IT Audit, should be responsible for
agreeing to the scope of testable compliance criteria for each system
release cycle. Software developers and system administrators are then
responsible for implementing features that pass these tests, just like
any other feature required by a business user or product owner.

Separating compliance testing from sign off, and automating such
testing, is a major contributor to fast and scalable compliance.

The Role of the Compliance Officer
The compliance officer’s role changes with automation. Without automated testing,
the effort of compliance is spent on checking for what breaks rules rather than on
formulating the clearest and most effective compliance rules for the enterprise.
When rules are imprecisely specified, the compliance officer’s talents are wasted on
many individual conversations about whether a particular implementation meets the
requirements.

Another factor is that, without a high-velocity compliance process, the compli-
ance officer has a relatively long time frame within which to establish compliance.
Over some period, data is collected and scans run, or analysis performed and the
effectiveness of the organization at driving compliance is evaluated. The compliance
officer spends his/her time between longer-term estimates of what can realistically
get done and short-term panic at how little has stuck.

12	 COMPLIANCE AT VELOCITY

The diagram below shows how the compliance officer’s role changes and be-
comes increasingly significant when enterprises aim for compliance at velocity.

When compliance is supported by automated testing and integrated in the de-
velopment process itself, compliance officers no longer need to focus on stopping
people from breaking rules. Instead, they make very enterprise-specific rules and
embed them in the development process. Instead of being seen as drags on veloci-
ty, compliance officers become a critical part of the enterprise’s transformation into
a high velocity production line.

Bringing together the compliance officer and the development and operations
teams improves the quality and throughput of all. This interaction has many benefits.
[A good overview is chapter 12 of Lean Enterprise: How High Performance Organi-
zations Innovate at Scale by Jez Humble, JoAnne Molesky and Barry O’Reilly.]

An End-to-End Example
Patch management is one of the most critical aspects of IT security. It is important
that you be able to identify out-of-date systems and upgrade them. Most regulatory
frameworks, such as PCI DSS, require it. You can use Chef to manage patches,
throughout the workflow, which is shown here.

Compliance
Officer

Manual
Compliance

Compliance
at Velocity

Proactive
engagement

Expressing policy
as testable code

Long-term process
improvement

Short term
compliance

Checking
implementations
by hand

Reactive
engagement

Chef
Compliance

Scan for
compliance

Chef
DK

Build & test
remediation

Chef
Delivery

Ship to
Delivery

Chef
Server

Remediate

	 COMPLIANCE AT VELOCITY	 13

Beginning with the Chef Compliance server, you can scan your nodes to see if
they are compliant and their software is up to date. You’ll receive a report telling you
the status of your infrastructure. Here is an example of a report from the Chef Com-
pliance dashboard.

Once you have the report, you can use Chef DK to begin to build and test the
remediation. Chef DK contains all the tools you need to create and test your code on
your workstation.

You can then send your changes to Chef Delivery (Delivery). Delivery provides
a pipeline for deploying changes. The pipeline contains stages for testing your
changes and making sure they work. Within the pipeline are two manual gates. One
of them is for code review, and the other sends the code to the release environments.
You can involve compliance and security officers at either or both of these points, to
make sure they are actively engaged in the release process.

Once the changes have passed all the stages in the Delivery pipeline, you can
send them to the Chef server. The Chef server can then begin to bring the nodes up
to date.

The Promise of the Coded Business
Operating at velocity has benefits in addition to agile, scalable compliance. The pro-
cesses, culture and technology used for compliance at velocity also give an enter-
prise a level of velocity, scale and consistency that lets it compete in the digital age.
We refer to such an enterprise as a “coded business”.

14	 COMPLIANCE AT VELOCITY

VELOCITY CONSISTENCY SCALE FEEDBACK

Operating cost
efficiency

Knowing your
customer

Product
differentiation

SCALE

VELOCTIY

C
O

N
S

IS
T

E
N

C
Y

FUNCTIONS RELATIONS

The coded business collapses the traditionally distinct strategic focus areas of
customer intimacy, operational efficiency and product improvement into a single
accelerated cycle. We refer to this as the automation cycle, because the automation
of the process throughout the product delivery lifecycle is core to its effectiveness.

For example, automation lets you patch a collection of servers consistently.
Every server node that performs a given role has exactly the same configuration and
maintains that configuration. Consistency enables an organization to make assump-
tions about the state of the server at any future time. This means, in turn, that initia-
tives to apply future patches do not have to account for a period of rediscovery (and
the cost of the software used to do this).

With automation, developers can be assured of the exact status of the environ-
ments to which they will be deploying, removing the frequent cycle of feedback and
tuning that occurs in the opposite case. All of this enables the business to get to
production faster and see the performance and use of the system ‘in the wild.’

In production, we learn about the patterns of use of the system and discover how
some elements that may be built into the consistent infrastructure definition may not
be ideal. Given that we use automation and have a fast, repeatable process for im-
proving the standard consistent infrastructure design, we can quickly apply the re-
quired changes to it. In other words, with automation we achieve scale where scale
refers not to size but to the appropriateness of resources allocated.

Like the large Internet innovators that increasingly have the attention of today’s
consumers, a coded business is at its core an agile software business, regardless of
whatever other goods or services it might provide. A coded business is capable of
operating at massive scale without losing its ability to innovate and respond quickly
to changes in the marketplace.

A coded business is also able to operate at high velocity within a highly regulat-
ed environment. Counter-intuitively, the practices that it puts in place to enable the
specification and testing of compliance are the same practices that enable it to
operate at high velocity. These practices are shown in this diagram.

	 COMPLIANCE AT VELOCITY	 15

INFRASTRUCTURE
AS CODE

POLICY
AS CODE

PRACTICE
AS CODE

A common
language
for describing
and applying
policy

Separate
certification
& testing

Compliance at veloctiy

Core among these practices is the concept of a common language for express-
ing compliance requirements and the automation of compliance checking. The coded
business has relentless focus on automation of practices (processes and workflow),
policy (compliance) and computing infrastructure.

Key Points
•  Demands for compliance are growing, even as companies are under

pressure to deliver new products and services at velocity.

•  To be compliant means maintaining control over access to resources,
processes and technical debt.

•  You must ensure auditability to prove that you are compliant.

•  Compliance frameworks are constantly becoming more detailed and are
open to interpretation.

•  To be compliant and to move at velocity seems impossible.

•  The solution is to embed compliance into the production pipeline.

•  There are four steps towards compliance at velocity: analyze, specify, test,
and certify.

•  Analyze to decide what you want, specify to express what you want as
code, automatically test that your policies are being followed and then sign
off.

•  Automation platforms, such as Chef, are the basis for compliance at velocity.

•  With automation the compliance officer’s role becomes proactive rather than
reactive.

•  The coded business uses automation to express infrastructure, policy
and practice.

•  The coded business delivers velocity, scale and consistency while
maintaining compliance.

16	 COMPLIANCE AT VELOCITY

NOTES
1. Personal communication.

2. http://www.treasury.gov/about/organizational-structure/offices/Pages/

Office-of-Foreign-Assets-Control.aspx

3. http://www.fincen.gov/statutes_regs/patriot/

4. http://www.business.ftc.gov/privacy-and-security/gramm-leach-bliley-act

5. http://www.business.ftc.gov/privacy-and-security/red-flags-rule

6. http://www.fincen.gov/statutes_regs/bsa/

7. http://en.wikipedia.org/wiki/Sarbanes%E2%80%93Oxley_Act

8. http://www.federalreserve.gov/bankinforeg/regecg.htm

9. http://www.sec.gov/spotlight/dodd-frank.shtml

10. http://www.justice.gov/sites/default/files/civil/legacy/2011/04/22/C-FRAUDS_FCA_Primer.pdf

11. http://www.hhs.gov/ocr/privacy/

12. https://www.ecb.europa.eu/ecb/legal/ssm/framework/html/index.en.html

13. http://www.bankofengland.co.uk/pra/Pages/default.aspx

14. http://www.fca.org.uk/firms/being-regulated/meeting-your-obligations

15. http://www.hhs.gov/ocr/privacy/hipaa/administrative/enforcementrule/hitechenforcementifr.html

16. https://www.pcisecuritystandards.org/security_standards/index.php

17. https://www.ffiec.gov/press/pr071012.htm

